
Lab 5: Parallel Programming
Spring 2015
Due: Friday, April 24th 2015

In this lab, I want you to experiment with a few different parallel programming environments. We will
look at shared memory computation (such as OpenMP and CUDA) and message-passing (such as
OpenMPI) frameworks.

We're are going to use all of these to perform a simple task: adding together the values in an array.

OpenMP

Let's start with OpenMP. Here is a simple program that adds 14 numbers together – in parallel. Create
a file named “omp_sum.c” which contains the following code:

#include <stdio.h>
#include <omp.h>

const int num_values = 14;
int A[] = {100, 45, 46, 233, 67, 1, 23, 45, 89, 6, 4, 101, 98, 56};

int main()
{

int sum = 0;
int tid;
int i;

#pragma omp parallel private(tid, sum)
{

tid = omp_get_thread_num();
#pragma omp parallel for reduction(+:sum)
for (i=0; i < num_values; ++i) {

sum += A[i];
}

if (tid == 0) {
printf("The sum is: %d\n", sum);

}
}

}

This program adds together the 14 values in A. We are going to store the result in a variable named
“num”. We also keep track

To compile it, type:

gcc -fopenmp omp_sum.c -o Sum

To run it, type:
OMP_NUM_THREADS=8 ./Sum

This will run it using 8 cores. It should print “914” (which is the sum of the values in the array).

OpenMPI

Now create a file named mpi_sum.c which contains this code:

#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>

const int num_values = 14;
int A[] = {100, 45, 46, 233, 67, 1, 23, 45, 89, 6, 4, 101, 98, 56};

int main(int argc, char* argv[])
{

int result;
int overall_sum = 0;
int sum = 0;
int nthreads, tid;
int i;

//Set up MPI
result = MPI_Init(&argc, &argv);
if (result < 0) {

printf("Init failed.\n");
exit(-1);

}

//Retrieve the number of processes
result = MPI_Comm_size(MPI_COMM_WORLD, &nthreads);
if (result < 0) {

printf("size failed.\n");
exit(-1);

}

//Retrieve the id number of this thread (its rank)
result = MPI_Comm_rank(MPI_COMM_WORLD, &tid);
if (result < 0) {

printf("rank failed.\n");
exit(-1);

}

(Continued on next page)

//Add together the values -- but only the ones assigned to
my thread.

for (i=0; i < num_values; i += nthreads) {
sum += A[i+tid];

}

//Use a "reduction" to add the partial sums with only a
logarithmic communication cost

result = MPI_Reduce(&sum, &overall_sum, 1, MPI_INT, MPI_SUM,
0, MPI_COMM_WORLD);

if (result < 0) {
printf("Reduce failed.\n");
exit(-1);

}

//Wait until everyone has finished
result = MPI_Barrier(MPI_COMM_WORLD);
if (result < 0) {

printf("Barrier failed.\n");
exit(-1);

}

//Only the master thread prints the result
if (tid == 0) {

printf("The sum is: %d\n", overall_sum);
}

//Clean up MPI
result = MPI_Finalize();
if (result < 0) {

printf("Finalize failed.\n");
exit(-1);

}
}

In this code, each process starts with an array, A, which contains 14 values. Since the values are
compiled into the program itself, we don't have to send them to each process. However, we do need to
add them in parallel and we can do this using a special function called MPI_Reduce. Reduce uses a
tree structure to perform an operation efficiently. MPI builds a tree of processes. Each process
computes a partial sum and then sends its partial sum to its parent in the tree. The parent adds its own
sum to the partial sums it gets from the children and then sends the new sum to its parent. At the end of
this process, the root node has the complete sum of all the numbers.

To compile, type:

mpicc mpi_sum.c -o MPISum

To run, type:

mpirun ./MPISum -np 4

Glitter

As with other projects, extend this one in a unique and creative way.

Submission

Create a tarball named "Lab5.tar.gz'' and submit through the course web site as usual.

