Sequences and Series Handout
CMSC 208
Spring 2020

Sequences

A sequence is an ordered list of numbers. The numbers in a sequence are called its elements.
We can describe sequences in several ways. One way is to list the elements of the sequence:
$1,2,4,8,16, \ldots$
We use the notation "..." to show that the sequence continues following a pattern established by the previous elements in the list.

We can also describe sequences in terms of a starting value and a formula for calculating the next value. For example, the sequence which lists all positive even numbers in increasing order can be given by:
$\mathrm{a}_{0}=0$
$\mathrm{a}_{\mathrm{n}}=2 * \mathrm{n}$
This is sometimes called an "iterative" definition of the sequence. The notation a_{i} represents the $\mathrm{i}^{\text {th }}$ element of the sequence. The value "i" is called the index of the element.

Some sequences can be defined in terms of a starting value and a formula for calculating each element from a previous element. This is a recursive or inductive definition of the sequence. For example, we can define the even number sequence recursively like this:
$\mathrm{a}_{0}=0$
$\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{\mathrm{n}-1}+2$

Convergence

For many sequences, the terms grow larger and larger as the index "i" gets bigger. We say that these sequences diverge to infinity.

However, some sequences instead get closer and closer to some value. We say that these sequences converge to that value. For example, the sequence defined by:
$\mathrm{a}_{0}=1$
$\mathrm{a}_{\mathrm{n}}=1 /(\mathrm{n}+1)$
which can be written $1,1 / 2,1 / 4, \ldots$
converges to $\mathbf{0}$.
A third possibility is that a sequence oscillates between a small set of values - but we will not see very many of these periodic sequences in this class.

Series

A numeric series is the sum of the elements of a sequence. If the sequence is finite, we say the series is a finite series. If the sequence has an infinite number of terms, we say the series is an infinite series.

We can write a series as a set of terms added together, such as:
$1+1 / 2+1 / 4+\ldots$
(Which adds up to 2)
Or
$1+2+4+8$
(Which adds up to 15)
Or we can use summation notation:

$$
\sum_{i=0}^{3} 2^{i}
$$

The way to read this notation is "the sum of 2^{i} as i goes from 0 to 3 ". The $i=0$ at the bottom tells us our starting value, the three at the top tells us our ending value and the 2^{i} gives us our formula.

$$
\sum_{i=0}^{3} 2^{i}=2^{0}+2^{1}+2^{2}+2^{3}=1+2+4+8=15 .
$$

Similarly, we can use summation notation for infinite series:

$$
\sum_{i=1}^{\infty} \frac{1}{i}
$$

The way to read this notation is "the sum of $\frac{1}{i}$ as i goes from 1 to infinity". The $\mathrm{i}=1$ at the bottom tells us our starting value, the three at the top tells us our ending value and the $\frac{1}{i}$ gives us our formula.

If an infinite sequence converges or oscillates, this sum will be a finite value. If the sequence diverges, the sum will grow to infinity (either positive or negative infinity!).

Many series can also be written as a closed form solution in which we can describe the sum of the elements using a simple formula which contains no ... or summation signs. For example, the series: $\sum_{1}^{n} i$ can be written as just $n \frac{(n-1)}{2}$.

Some important series formulas to know are:

$$
\begin{aligned}
& \sum_{i=1}^{n} 1=\mathrm{n} . \\
& \sum_{i=1}^{n} c=\mathbf{c}^{*} \mathrm{n} \text { for any constant } \mathbf{c} . \\
& \sum_{i=a}^{b}(x+y)=\sum_{i=a}^{b} x+\sum_{i=a}^{b} y \\
& \sum_{1}^{n} i=n \frac{(n-1)}{2} \\
& \sum_{1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} \\
& \sum_{i=1}^{n} a r^{i}=a \frac{\left(1-r^{n}\right)}{1-r} \text { if }-1<\mathrm{r}<1 \text { (this is called the Geometric Series formula) }
\end{aligned}
$$

If we let the geometric series go to infinity, this becomes:

$$
\sum_{i=1}^{\infty} a r^{i}=a \frac{1}{1-r}
$$

Another important series to know is the harmonic series:

$$
\sum_{i=1}^{n} \frac{1}{i}
$$

When n is infinity, this diverges (gets larger and larger), but for finite values of n , it approximates the natural logarithm of n.

