
CMSC 162 (Spring 2015)
Introduction to Algorithmic Design I (4 credits)

http://marmorstein.org/~robert/Spring2015/cs162.html

Instructor: Robert Marmorstein Office: Ruffner 329
Office Phone: 434-395-2185 E-mail: marmorsteinrm@longwood.edu
Office Hours: 1:30pm-3:00pm MWF, 10:00am-11:00am T or by appointment

Lecture:
Section 1: 10:00am - 10:50am MWF (Ruffner 352)
Section 2: 12:00pm - 12:50am MWF (Ruffner 352)

Lab:
Section 1: 12:30pm – 1:45pm T (Ruffner G56)
Section 2: 2:00pm – 3:15pm T (Ruffner G56)

Course Description:
A continuation of CMSC 160. Topics include algorithmic design, complexity analysis, abstract data types, and
encapsulation and basic data structures. Advanced topics using a modern high-level programming language
inheritance, overloading, and use of objects.

Prerequisite:
Grade of C- or better in CMSC 160.

Course Objectives:
The student will be able to :

1. create programs using objects, classes, and modules.

2. apply and implement fundamental data structures, such as lists, stacks, queues, and hash
tables.

3. analyze the time-complexity of algorithms.

Textbook and Other Resources:
The textbook for this class is "Classes and Data Structures" by Jeffrey S. Childs, Pearson, 2008, ISBN: 978-0-
13-158051-0.

We will supplement readings from the textbook with readings from other sources. In particular, you will need
to learn how to use the Unix Programmer's Manual (sometimes called the “man pages”) and the TexInfo
documentation (accessible through the “info” command on any Linux system). These are an invaluable
resource for any programmer that provide information about the standard programming libraries on the system
and the UNIX programming environment we will be using to develop software. Both of these documents can be
downloaded for free and installed on your computer. Alternatively, you can use the on-line versions which are
linked from the course web site (though these may be out of date or intended for use with a slightly different
environment than we will be using). Other readings will be posted to the course web site.

Course Requirements:
Your grade will depend largely on completion of the weekly lab sessions. These projects will comprise 50% of
your grade. The remainder of your grade will come from homework assignments (20%), pop quizzes (10%), the
midterm exam(s) (10%), and the final exam (10%).

Grading Policy:
Late work will not be accepted unless you have a serious medical or family emergency which prevents you
from completing the assignment on time. In such cases, you do not need a doctor's note, but you must send me
e-mail within a reasonable amount of time (typically twelve hours from the assignment due date) to explain
your circumstances and to make arrangements for the work to be completed. All other late work will receive a
grade of 0%.

Slip Days:
You will be allocated a fixed number of slip days at the start of the semester. You may use your slip days to
extend the due date of one or more programming projects. You can use all of your slip days on one assignment
or you may use them over multiple assignments.

Slip days are calculated from the minute the assignment is due until you turn it in and are rounded up to the
nearest integer value. That means that if you turn an assignment in 24 hours and 1 minute after the due date,
you will use up two slip days. The slip day clock runs over weekends and holidays. If a lab is due on Friday and
you turn it in on Monday, you will have used three slip days, not one. Slip days cannot be shared, traded,
bought, or sold, but can occasionally be earned by participation in relevant campus activities I select.

Grading Scale:
100-91: A 90: A-

89: B+ 88-81: B 80: B-
79: C+ 78-71: C 70: C-
69: D+ 68-64: D
63 or lower: F (There is no grade of D- in this course. Anything below a 64 is failing.)

Attendance:
I expect you to attend class unless you are sick or engaged in a school-sponsored sport or extracurricular
activity. Please do NOT come to class if you are sick. Instead, contact me within 12 hours of the absence to
check whether you've missed any work and make arrangements to make up any missed quizzes. You should
also make arrangements to get notes from another student in the class.

You should also check the course web site for announcements, new assignments, and other important updates.

I will rely primarily on your honor for enforcement of the attendance policy. However, I will keep a record of
your attendance as required by Longwood policy. In accordance with that policy, missing more than 10% of
scheduled class time (5 class sessions) to unexcused absences may, at my discretion, result in loss of one letter
grade and missing 25% of class or more (14 sessions), whether excused or not may result in an automatic failing
grade.

Food and Drink:
You may bring non-alcoholic beverages, including soft drinks, to class. However, please do not eat in class (it
distracts me and the other students). Violations of this policy will be considered an unexcused absence.

I occasionally grant exceptions to this rule for students who must otherwise forgo lunch or have medical needs
that require them to eat in class. If you feel that you need such an exception, you must make arrangements with
me in advance (i.e. before bringing food to class).

Cell Phones and Laptops:
Cell phones, music players, and laptops are to be turned off and put away during class, except as needed for the
lab sessions. Violations of this policy will be considered an unexcused absence.

Honor Code and Collaboration:
I am a strong believer in the honor code. As such, I encourage you to actively collaborate with other students
and to discuss homework problems. However, there is a point at which collaboration becomes cheating and I
deal harshly with cheating in my courses. To help you understand the line between acceptable discussion of a
project and dishonorable behavior, I ask you to observe the following rules:

1. Exams and quizzes are to be completed entirely on your own.

2. For homework and projects, everything you turn in should be something YOU have personally typed
or hand-written. You may NOT copy code electronically from other students or the Internet.

The work you submit should, in general, be your own original work or material which I have provided and you
have suitably modified by yourself.

This doesn't mean you can't look online for help with a project. It just means that you must re-type any code
you find and not just download it or copy/paste it. You may not share code with other students using flash
drives, cell phones, e-mail, web sites, floppies, CDs, or any other electronic storage or communication device
unless I specifically direct you to do so. You may not print out copies of your code to share with other students
(personal copies or copies to show me are fine).

3. Do not copy large blocks of code from other students or the Internet.

You MAY assist other students or get assistance with simple problems like syntax errors, but you may NOT copy
large blocks of code from each other. A good guideline of what "large" means is that copying one or two lines
of code is usually okay, but copying more than three complete statements is usually too much.

4. You must give proper attribution.

Whenever you receive help or use an online resource, you should comment your code to give proper credit. A
simple comment like:

 /* based on http://codewarrior.com */

or

/* Jessica helped me with the curly braces here */

is fine. This comment should go directly above or on the same line as the code on which you received help, so
that it is clear exactly which parts of your program are original and which are not.

5. You are responsible for securing your code.

Helping other students to cheat is also cheating. Furthermore, it is your responsibility to make sure that other
students do not use your work to cheat. Be careful with who you let access your computer and report any
missing files, flash drives, or other devices to me promptly.

Infractions of these policies will be dealt with harshly under the Longwood Honor Code. Any student convicted
of an honor offense involving this class will automatically receive a final course grade of F in addition to any
penalties imposed by the Honor Board. You should consider all work in this class to be pledged work, whether
or not the pledge appears on the assignment.

http://codewarrior.com/

Computing Environment:
In order to complete the programming assignments, you will need to use a Unix-based open-source operating
system such as Linux or BSD. You are responsible for getting a development environment set up and
working correctly on your system.

To do this, you have two options. One option is to install Linux directly onto your hard drive and dual-boot.

Another option is to use a Live CD or Live USB disk to run Linux without any modifications to your hard drive.
I highly recommend that you install Linux directly to a partition of your hard drive or use a Live USB
disk. The Live CD option requires the use of a flash drive to save your work and can introduce permission
problems that make compiling and running the projects more difficult. I do not recommend the use of virtual
machines to run Linux for this class.

If you have a Macintosh, you have an additional option. Your operating system already provides many Unix
tools through the terminal utility. Most of the projects in this class can be completed directly from the Mac
Terminal. To do that, you will need to install the XCode developer tools, which are available free from Apple.
Be aware that you may also need to adapt the instructions of some of the programming labs to account for
differences in the programming environment. If you elect to choose this option, it is your responsibility to get
everything set up properly and make things work.

Tentative Course Schedule:
Jan. 13 Lab 0: Writing C++ Programs in Linux using Vim

Jan. 14-16 Introduction, UNIX review, C++ Review,
Design: Code Reuse and Code Modularity
 Types, Loops, Functions, Blocks and Scope,
Read Syllabus

Jan. 19 Holiday: NO CLASS

Jan. 20 Lab 1: Unix Review
Last day of Add/Drop (by 5 pm)

Jan. 21-23 Structs and Classes, Encapsulation and Abstraction,
Methods and Operators, Accessors and Mutators
Design: Top-Down Design, Implementation and Interface
Version Control
Read Chapter 1

Jan. 26-30 Linking Libraries, Makefiles, Testing, In-line Functions
Templates, Vectors, Lists, and Maps
Read Chapter 2

Jan. 27 Lab: Catchup and Review

Feb. 2-6 Constants and Mutability, Pointers and References,
Dynamic Memory, Constructors and Destructors, Initializers
Dynamic Arrays
Read Chapters 3, 4, and 5

Feb. 3 Lab 2 : Dynamic Arrays

Feb. 9-13 Inheritance, Composition, and Polymorphism, Casting,
Static Members, Using the Debugger, Virtual functions and classes

Read Chapter 6

Feb. 10 Lab: Catchup and Review

Feb. 16-20 Catchup and Review, Midterm Exam

Feb. 17 Lab 3: Debugging and Inheritance

Feb. 23-27 Linked Lists, Array-based Lists, Pointer-based Lists,
Using Valgrind
Read Chapter 7

Mar. 2-6 Holiday: NO CLASS

Mar. 9-13 Stacks and Queues, Time Complexity, Using profilers
Read Chapters 8 and 9

Mar. 10 Lab 4: Linked Lists, Stacks and Queues

Mar. 16-20 Abstract Data Types, Iterators, Hash Functions, and Hash Tables,
Using static analysis tools
Read Chapters 10 and 11

Mar. 17 Lab: Catchup and Review

Mar. 23-27 Priority Queues, Trees, and Heaps, Tree Traversals
Read Chapter 12

Mar. 24 Lab 5: Heaps

Mar. 30-Apr. 3 Recursion, Searching, Binary Search
Read Chapter 13

Mar. 31 Lab: Catchup and Review

Apr. 6-10 Sorting (Selection Sort, Insertion Sort, Merge Sort, Heap Sort)
Read Chapter 14

Apr. 7 Lab 6: Sorting

Apr. 13-17 Binary Search Trees, Application of Balanced Binary Search Trees, Graphs
Read Chapter 15

Apr. 14 Lab 7: Binary Search Trees

Apr. 20-24 Catchup and Review

Apr. 30 Section 1 Final Exam (3:00pm-5:30pm, Thursday)
Section 2 Final Exam (11:30am-2:00pm, Friday)

